首页 - 通知公告 - 正文

第11届·应用社会科学研究方法研修班简章(暑期班·2022·上海)

创建时间:  2022-04-26  陈伟   浏览次数:   返回

时间:2022年7月2日– 7月31日

主办:上海大学社会学院

上海纽约大学应用社会经济研究中心

协办:上海大学数据科学与都市研究中心

上海大学上海社会科学调查中心

为推动中国社会学定量研究方法的教学,加快培养应用社会科学研究的人才,促进教学和研究资源的地区均衡分布,上海大学社会学院与香港科技大学应用社会经济研究中心自2012年夏季开始,联合举办《应用社会科学研究方法研修班》,至今已经成功举办10届18期“暑期班”与“冬季班”,参训学员超5400人次,来自全国各个省份以及欧美的350多所高校与科研机构。

2022年暑期,上海大学社会学院与上海纽约大学应用社会经济研究中心将在上海举办《第11届·应用社会科学研究方法研修班·暑期班》,邀请上海纽约大学助理教授缪佳博士、浙江大学“百人计划”研究员李昂然博士、美国纽约州立大学石溪分校助理教授张勇军博士、美国纽约市立大学皇后学院副教授徐宏伟博士,美国波尔州立大学教授(Ball State)徐峻博士等学有专长的学者讲授中英文量化研究方法课程,更加突出“研修班”的跨学科、国际化、多层次和实用性的特色。

(1)2022年暑期班继续秉持基础模块专题模块的课程模式,内容化整为零,前后衔接一体,学员可根据自己的实际情况自由选择不同模块。

(2)2022年暑期班继续秉持方法教学与实际应用相结合的宗旨,教学与答疑相结合。

(3)2022年暑期班继续注重培养学员对社会科学研究方法的深入理解,对统计技术和数据处理的操作和结合社会科学研究的应用能力。

考虑到新冠疫情的持续影响,本次暑期班采用全程线上直播的方式授课。其中,“基础模块”为中文授课,由上海大学数据科学与都市研究中心负责实施;“专题模块”为英文授课,由上海纽约大学应用社会经济研究中心负责实施。在研修班期间,主办方将同步举办社会科学研究方法系列讲座,对研修班学员免费开放。

我们热诚欢迎国内外各地区高等院校、科研院所的青年教师、研究生和高年级本科生报名参加!

一、课程安排

模块名称

模块内容

时间

学费

基础模块

《STATA与应用回归分析基础》

Applied Regression Analysis

7/2-7/8

1000元

《类别数据分析》

Categorical Data Analysis

7/11-7/15

专题模块[2.1]

《计算社会科学导论》

Introduction to Computational Social Science

7/15-7/19

1000元

专题模块[2.2]

《社会科学空间数据分析》

Spatial Data Analysis in Social Sciences

7/21-7/25

1000元

专题模块[2.3]

《应用贝叶斯回归分析导论》

Introduction to Applied Bayesian Regression Analysis

7/27-7/31

1000元

(一)基础模块

时间:2022年7月2-15号

地点:腾讯会议直播(无回放)

模块教学内容:

《STATA与应用回归分析基础》[课程编号501](上海纽约大学缪佳

《类别数据分析》[课程编号503](浙江大学李昂然

招生人数:

300人

基础模块以高年级本科生与研究生为主,兼顾青年教师;

修过相关统计课程及熟悉STATA操作者优先。

基础模块学费(线上):1000/

[1.1]STATA与应用回归分析基础》[课程编号501

主讲教师:缪佳助理教授

时间:2022年7月2日-7月8日

课时:42学时,上午3小时课程,下午3小时上机答疑,共7天。

语言:中文授课

课程介绍:

本课程侧重于从应用与操作的角度介绍多元线性回归分析技术,内容涵盖函数与变量形式、统计检验与回归诊断等。课程首先将介绍简单线性回归的主要假设、估计方法与特性,进而推及多元回归模型并解释后者的优势与必要性。本课程只考虑因变量为连续或两分变量的情形。课程将重点讨论各种形式的自变量,如虚拟变量、连续变量的对数形式、二次项以及自变量之间的相互作用,并阐述如何解释相关的回归系数。接下来,课程将介绍系数与系数线性组合的显著性检验以及对模型拟合优度的测量。课程的最后将介绍针对奇异值、多重共线性与异方差性等问题的回归诊断技术。在对以上所有主题的讨论中,本课程将着重于其在实际分析中的意义及如何运用STATA统计软件加以实现,仅在必要时给予数学证明或统计理论上的解释。

教师简介:

缪佳,香港科技大学社会科学哲学博士,现任上海纽约大学文理学部社会学助理教授(常任轨),纽约大学社会学系联属助理教授(Affiliated Assistant Professor),曾为香港科技大学社会科学部研究助理教授,北卡罗莱纳大学教堂山分校社会学系访问学者。研究方向为城市社会学、社区研究、人口健康与老龄化,研究成果发表于Social Forces, Cities, Chinese Sociological Review, Social Science & Medicine, Aging & Society, Health & Place等期刊。主要讲授Methods for Social Research, Urban Sociology, Population and Society, Quantitative Analysis and Empirical Methods等课程。2021年入选上海市“青年东方学者”,2022年入选上海市“领军人才(海外)项目青年人才”。

[1.2]《类别数据分析》[课程编号503

主讲教师:李昂然研究员

课程时间:2022年7月11-15日

课时:30学时,上午3小时课程,下午3小时上机答疑,共5天。

语言:中文授课。

课程介绍:

类别变量回归模型作为线性回归模型的延伸,包括对二分变量(dichotomous variable),定序变量(ordinal variable) ,多项变量(multinomial variable)以及频次(count)的回归分析。在对基本概念和模型估计简介之后,本课程主要集中在模型构建与解释,以及如何应对在社会科学运用中常见的问题。作为线性回归的延伸,本课程要求学员对线性回归的基本假设、解释、以及模型构建有基本了解,同时对基本数学符号及运算法则(比如对数运算)有所了解。本课程将使用STATA作为模型估计工具。

教师简介:

李昂然,美国康涅狄格大学社会学博士,现任浙江大学社会学系“百人计划”研究员。其研究兴趣主要包括家庭学校教育与代际流动的关系以及高等教育公平问题。主要讲授教育社会学、分类数据分析等课程。其研究发表于Social Forces, Social Science Research,Sociology of Education, Chinese Sociological Review, Chinese Journal of Sociology等学术期刊。

(二)专题模块

[2.1] Introduction to Computational Social Science[课程编号522A]

主讲教师:Yongjun Zhang (张勇军)教授

语言:英文

时间:2022年7月15日-7月19日

地点:线上直播(无回放)

课时:每天上午3.5小时课程,共5讲。

学费:1000元(提供学费减免奖学金,名额有限)

招生人数:25人

The rapid development in information and communications technology has revolutionized how social scientists think about human and social behavior and conduct social research. Especially during the COVID-19 pandemic, big tech firms have provided scholars with various large-scale structured and unstructured datasets. Thus, scholars need to build new toolkits to process text, image, audio, video, and geospatial data innovatively and efficiently in order to advance social theories and address social science problems. This course aims to 1) offer a survey of methods and techniques commonly used in computational social science and 2) introduce a pipeline of doing computational social science in different settings such as cloud computing.Topics in thecourse consist of research ethics in the big data era, basics in machine learning (including deep learning), basics in cloud computing, natural language processing, basics in computer vision, APIs and web-scraping, and data visualization. The programming language used in the course includes R and Python (Students with limited programming language are also encouraged to apply, and we will provide lab training.).

Prerequisites:

Basic programming skills in R or Python.

• Intro statistics and linear regression models.

About the InstructorYongjun Zhang is an Assistant Professor of Sociology and Institute for Advanced Computational Science at the State University of New York (Stony Brook). He is also a research affiliate at New York University. Dr. Zhang is a computational sociologist who combines computational, network, and statistical methods with large-scale datasets to study organizational, social, and political behavior, particularly focusing on segregation and polarization in different settings. Currently, he is using relational data from SafeGraph and Facebook as well as 190 million L2 voter records and 260 million Infutor consumer records to assess the antecedents and consequences of racial/partisan/income segregation in the United States. He is also using deep learning methods to detect and monitor anti-AAPI hate speech on Twitter since the COVID-19 outbreak. His research has been funded by OVPR and IACS seed grants at Stony Brook University. His work has appeared in leading social science journals such as theAmerican Journal of Sociology, Demography, Journal of Marriage and Family, and Plos One, among others. He has won the 2020 James Coleman Award from the Sociology of Education Section at American Sociological Association and the 2021 SIM Best Paper Submission at the Academy of Management.

[2.2] Spatial Data Analysis in Social Sciences[课程编号512]

主讲教师:Hongwei Xu (徐宏伟)教授

语言:英文

时间:2022年7月21日-7月25日

地点:线上直播(无回放)

课时:每天上午3.5小时课程,共5讲。

学费:1000元(提供学费减免奖学金,名额有限)

招生人数:25人

Course Description

This course introduces spatial data analysis applied in multiple social science disciplines including sociology, demography, epidemiology, public health, political science, and biostatistics. The course consists of two modules: (1) exploratory spatial data analysis (ESDA); and (2) spatial modeling. Students will learn how to carry out ESDA and spatial modeling in different software packages including R, GeoDa, QGIS, and Stata.

In the ESDA module, we will introduce the three types of spatial data (areal data, point-referenced or geostatistical data, and mapped point process or point pattern data). We will learn basic process spatial data processing in preparation for analysis, Monte Carlo simulation and Bayesian spatial statistics, cluster analysis of mapped point process, and the concept of spatial autocorrelation.

In the spatial modeling module, we will survey various statistical models that suit different types of spatial data. Some examples are: (1) space-time models for mapped point process; (2) the conditional autoregressive model (CAR) and the simultaneous autoregressive model (SAR) for areal data; (3) Bayesian hierarchical models for point-referenced or geostatistical data; and (4) multilevel and Bayesian spatial models for small area estimation.

Throughout the course, we will focus on the intuition behind spatial statistics, the use of computer software, and coding. We will run computer simulations and replicate case studies in real social science research. Some of the case studies will be drawn from my own research.

About the InstructorHongwei Xu is an associate professor of sociology at the City University of New York (CUNY) – Queens College. He received his BA in sociology from Peking University in 2003 and PhD in sociology from Brown University in 2011. Before joining CUNY, he was a post-doc research fellow at the Institute for Social Research, University of Michigan during 2012-2014, and a research assistant professor at the same institute during 2015-2018. His research interests include population aging and health, spatial demography, and quantitative methods. His work has been published in American Journal of Sociology, Demography, European Sociological Review, Health & Place, International Journal of Epidemiology, Journal of Epidemiology & Community Health, Population Studies, Sociological Methodology, Social Science & Medicine.

[2.3] Introduction to Applied Bayesian Regression Analysis [课程编号509]

主讲教师:Jun Xu(徐峻)教授

语言:英文

时间:2022年7月27日-7月31日

地点:线上直播(无回放)

课时:每天上午3.5小时课程,共5讲。

学费:1000元(提供学费减免奖学金,名额有限)

招生人数:25人

Course Description

With the exponential growth in computing power, Bayesian statistics has metamorphosed from an obscure alternative to a serious challenger of the traditional frequentist statistics. This workshop introduces the conceptual background, computational procedures, and statistical techniques for doing Bayesian regression analysis, with a focus on application and interpretation. Selected topics covered include the historical background of the Bayesian framework in comparison with the classical frequentist approach, the Bayes’s theorem, the basics of likelihood theory, the Markov chain Monte Carlo (MCMC) methods, Bayesian GLM and advanced models, and post-estimation analyses. The first component of each lecture covers important concepts and techniques, and the second component teaches the workflow of doing Bayesian data analysis using R and Stan.

About the InstructorDr. Jun Xu is professor of sociology and data science at Ball State University. His quantitative research/teaching interests include Bayesian statistics, categorical data analysis, causal inference, machine learning, and statistical programming. His methodological works have appeared in journals such asSociological Methods and Research, Social Science Research, and The Stata Journal. He is an author of Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives(with Dr. Andrew S. Fullerton by Chapman & Hall), and he is the author of another statistical monograph on modern regression analysis forthcoming with the same publisher. In the past two decades or so, he has authored or co-authored several statistical application packages, including gencrm, grcompare, and the popular SPost9.0 package in Stata and stdcoef in R.

二、申请程序

1.申请原则:

(1) 2022年暑期班“基础模块”由2门课程组成,采取“模块报名”的申请方式,2门基础课程不能分别单独申请。

(2) “专题模块”由3门课程组成,采取“课程报名”的申请方式,3门专题课程可以分别单独申请,最多不能超过两门

(3)原则上不鼓励学员同时申请“基础模块课程”与“专题模块课程”。

2.申请日期:2022年4月26日 - 5月30日。

3.申请方式:

Ø在线提交报名申请(扫描对应的二维码提交申请)。

Ø注意:由于基础模块和专题模块所需要的申请材料有差异,请分开申请。

1B8DA

基础班报名

1FABD

专题班报名

Ø2022年6月10日前审核报名材料并尽快通知录取结果,录取结果将于6月10号在上海大学社会学院(https://sociology.shu.edu.cn/)、上海大学数据科学与都市研究中心网站(https://suns.shu.edu.cn/)以及魔都有调研微信公众号公布。录取通知及缴费方式将陆续发送至报名邮箱。若在6月20日之前未收到录取结果,可来电或者发邮件至shuworkshop2022@126.com咨询。

4.学员收到录取通知(电子邮件)后,发送《回执》或缴费证明给主办方;主办方将通过电邮发送相关材料和指引。

5.咨询方式:

电话

021-66136195(上海大学陈老师)(基础班)

021-20595669(上海纽约大学刘老师)(专题班)

咨询邮箱:

shuworkshop2022@126.com(基础班)

shanghai.caser@nyu.edu(专题班)

官方网站:

上海大学社会学院

上海大学数据科学与都市研究中心

上海纽约大学应用社会经济研究中心

6.确保所提供的联系方式(电话和电子邮箱)能及时联系到申请者本人。如所提供的电话和电子邮箱有变,请及时告知,以免由此导致相关信息资料不能正常送达。

三、课程考核

1.凡参加暑期课程的学员,完成必须的作业。

2.完成课程培训,颁发《结业证书》。

四、应用社会科学方法研修班课程规划大纲

基础模块课程

500.《统计软件应用:STATA》[基础课程]

501.《应用回归分析基础》[基础课程]

502.《高级应用回归分析》[基础课程]

503.《类别数据分析》[基础课程]

专题模块课程

504.《调查数据分析》

505.《对数线形模型》

506.《事件史分析》

507.《多层次线形模型》

508.《固定效应模型》

509.《因果分析模型》

510.《结构方程模型》

511.《研究设计》

512.GIS应用与空间分析》

513.《潜类分析》

514.《网络分析》

515.《抽样调查》

516.《增长模型》

517.《因素分析》

518.《路径分析》

519.《民意调查》

520.《计算机在调查中的应用》

521.《统计软件应用:SAS》

521.《统计软件应用:R》

522.《数据挖掘》

522A.《计算社会科学入门》

522B.《定量文本分析》

522C.《应用贝叶斯回归分析导论》

高级研讨课程

523.《数据分析专题》

524.《社会科学研究专题》

525.《社会科学定量研究论文》工作坊


上一条:近期专业学术会议征文部分汇总(6月14日更新)

下一条:关于2022年优秀毕业生评选工作的通知

首页 - 通知公告 - 正文

第11届·应用社会科学研究方法研修班简章(暑期班·2022·上海)

创建时间:  2022-04-26  陈伟   浏览次数:   返回

时间:2022年7月2日– 7月31日

主办:上海大学社会学院

上海纽约大学应用社会经济研究中心

协办:上海大学数据科学与都市研究中心

上海大学上海社会科学调查中心

为推动中国社会学定量研究方法的教学,加快培养应用社会科学研究的人才,促进教学和研究资源的地区均衡分布,上海大学社会学院与香港科技大学应用社会经济研究中心自2012年夏季开始,联合举办《应用社会科学研究方法研修班》,至今已经成功举办10届18期“暑期班”与“冬季班”,参训学员超5400人次,来自全国各个省份以及欧美的350多所高校与科研机构。

2022年暑期,上海大学社会学院与上海纽约大学应用社会经济研究中心将在上海举办《第11届·应用社会科学研究方法研修班·暑期班》,邀请上海纽约大学助理教授缪佳博士、浙江大学“百人计划”研究员李昂然博士、美国纽约州立大学石溪分校助理教授张勇军博士、美国纽约市立大学皇后学院副教授徐宏伟博士,美国波尔州立大学教授(Ball State)徐峻博士等学有专长的学者讲授中英文量化研究方法课程,更加突出“研修班”的跨学科、国际化、多层次和实用性的特色。

(1)2022年暑期班继续秉持基础模块专题模块的课程模式,内容化整为零,前后衔接一体,学员可根据自己的实际情况自由选择不同模块。

(2)2022年暑期班继续秉持方法教学与实际应用相结合的宗旨,教学与答疑相结合。

(3)2022年暑期班继续注重培养学员对社会科学研究方法的深入理解,对统计技术和数据处理的操作和结合社会科学研究的应用能力。

考虑到新冠疫情的持续影响,本次暑期班采用全程线上直播的方式授课。其中,“基础模块”为中文授课,由上海大学数据科学与都市研究中心负责实施;“专题模块”为英文授课,由上海纽约大学应用社会经济研究中心负责实施。在研修班期间,主办方将同步举办社会科学研究方法系列讲座,对研修班学员免费开放。

我们热诚欢迎国内外各地区高等院校、科研院所的青年教师、研究生和高年级本科生报名参加!

一、课程安排

模块名称

模块内容

时间

学费

基础模块

《STATA与应用回归分析基础》

Applied Regression Analysis

7/2-7/8

1000元

《类别数据分析》

Categorical Data Analysis

7/11-7/15

专题模块[2.1]

《计算社会科学导论》

Introduction to Computational Social Science

7/15-7/19

1000元

专题模块[2.2]

《社会科学空间数据分析》

Spatial Data Analysis in Social Sciences

7/21-7/25

1000元

专题模块[2.3]

《应用贝叶斯回归分析导论》

Introduction to Applied Bayesian Regression Analysis

7/27-7/31

1000元

(一)基础模块

时间:2022年7月2-15号

地点:腾讯会议直播(无回放)

模块教学内容:

《STATA与应用回归分析基础》[课程编号501](上海纽约大学缪佳

《类别数据分析》[课程编号503](浙江大学李昂然

招生人数:

300人

基础模块以高年级本科生与研究生为主,兼顾青年教师;

修过相关统计课程及熟悉STATA操作者优先。

基础模块学费(线上):1000/

[1.1]STATA与应用回归分析基础》[课程编号501

主讲教师:缪佳助理教授

时间:2022年7月2日-7月8日

课时:42学时,上午3小时课程,下午3小时上机答疑,共7天。

语言:中文授课

课程介绍:

本课程侧重于从应用与操作的角度介绍多元线性回归分析技术,内容涵盖函数与变量形式、统计检验与回归诊断等。课程首先将介绍简单线性回归的主要假设、估计方法与特性,进而推及多元回归模型并解释后者的优势与必要性。本课程只考虑因变量为连续或两分变量的情形。课程将重点讨论各种形式的自变量,如虚拟变量、连续变量的对数形式、二次项以及自变量之间的相互作用,并阐述如何解释相关的回归系数。接下来,课程将介绍系数与系数线性组合的显著性检验以及对模型拟合优度的测量。课程的最后将介绍针对奇异值、多重共线性与异方差性等问题的回归诊断技术。在对以上所有主题的讨论中,本课程将着重于其在实际分析中的意义及如何运用STATA统计软件加以实现,仅在必要时给予数学证明或统计理论上的解释。

教师简介:

缪佳,香港科技大学社会科学哲学博士,现任上海纽约大学文理学部社会学助理教授(常任轨),纽约大学社会学系联属助理教授(Affiliated Assistant Professor),曾为香港科技大学社会科学部研究助理教授,北卡罗莱纳大学教堂山分校社会学系访问学者。研究方向为城市社会学、社区研究、人口健康与老龄化,研究成果发表于Social Forces, Cities, Chinese Sociological Review, Social Science & Medicine, Aging & Society, Health & Place等期刊。主要讲授Methods for Social Research, Urban Sociology, Population and Society, Quantitative Analysis and Empirical Methods等课程。2021年入选上海市“青年东方学者”,2022年入选上海市“领军人才(海外)项目青年人才”。

[1.2]《类别数据分析》[课程编号503

主讲教师:李昂然研究员

课程时间:2022年7月11-15日

课时:30学时,上午3小时课程,下午3小时上机答疑,共5天。

语言:中文授课。

课程介绍:

类别变量回归模型作为线性回归模型的延伸,包括对二分变量(dichotomous variable),定序变量(ordinal variable) ,多项变量(multinomial variable)以及频次(count)的回归分析。在对基本概念和模型估计简介之后,本课程主要集中在模型构建与解释,以及如何应对在社会科学运用中常见的问题。作为线性回归的延伸,本课程要求学员对线性回归的基本假设、解释、以及模型构建有基本了解,同时对基本数学符号及运算法则(比如对数运算)有所了解。本课程将使用STATA作为模型估计工具。

教师简介:

李昂然,美国康涅狄格大学社会学博士,现任浙江大学社会学系“百人计划”研究员。其研究兴趣主要包括家庭学校教育与代际流动的关系以及高等教育公平问题。主要讲授教育社会学、分类数据分析等课程。其研究发表于Social Forces, Social Science Research,Sociology of Education, Chinese Sociological Review, Chinese Journal of Sociology等学术期刊。

(二)专题模块

[2.1] Introduction to Computational Social Science[课程编号522A]

主讲教师:Yongjun Zhang (张勇军)教授

语言:英文

时间:2022年7月15日-7月19日

地点:线上直播(无回放)

课时:每天上午3.5小时课程,共5讲。

学费:1000元(提供学费减免奖学金,名额有限)

招生人数:25人

The rapid development in information and communications technology has revolutionized how social scientists think about human and social behavior and conduct social research. Especially during the COVID-19 pandemic, big tech firms have provided scholars with various large-scale structured and unstructured datasets. Thus, scholars need to build new toolkits to process text, image, audio, video, and geospatial data innovatively and efficiently in order to advance social theories and address social science problems. This course aims to 1) offer a survey of methods and techniques commonly used in computational social science and 2) introduce a pipeline of doing computational social science in different settings such as cloud computing.Topics in thecourse consist of research ethics in the big data era, basics in machine learning (including deep learning), basics in cloud computing, natural language processing, basics in computer vision, APIs and web-scraping, and data visualization. The programming language used in the course includes R and Python (Students with limited programming language are also encouraged to apply, and we will provide lab training.).

Prerequisites:

Basic programming skills in R or Python.

• Intro statistics and linear regression models.

About the InstructorYongjun Zhang is an Assistant Professor of Sociology and Institute for Advanced Computational Science at the State University of New York (Stony Brook). He is also a research affiliate at New York University. Dr. Zhang is a computational sociologist who combines computational, network, and statistical methods with large-scale datasets to study organizational, social, and political behavior, particularly focusing on segregation and polarization in different settings. Currently, he is using relational data from SafeGraph and Facebook as well as 190 million L2 voter records and 260 million Infutor consumer records to assess the antecedents and consequences of racial/partisan/income segregation in the United States. He is also using deep learning methods to detect and monitor anti-AAPI hate speech on Twitter since the COVID-19 outbreak. His research has been funded by OVPR and IACS seed grants at Stony Brook University. His work has appeared in leading social science journals such as theAmerican Journal of Sociology, Demography, Journal of Marriage and Family, and Plos One, among others. He has won the 2020 James Coleman Award from the Sociology of Education Section at American Sociological Association and the 2021 SIM Best Paper Submission at the Academy of Management.

[2.2] Spatial Data Analysis in Social Sciences[课程编号512]

主讲教师:Hongwei Xu (徐宏伟)教授

语言:英文

时间:2022年7月21日-7月25日

地点:线上直播(无回放)

课时:每天上午3.5小时课程,共5讲。

学费:1000元(提供学费减免奖学金,名额有限)

招生人数:25人

Course Description

This course introduces spatial data analysis applied in multiple social science disciplines including sociology, demography, epidemiology, public health, political science, and biostatistics. The course consists of two modules: (1) exploratory spatial data analysis (ESDA); and (2) spatial modeling. Students will learn how to carry out ESDA and spatial modeling in different software packages including R, GeoDa, QGIS, and Stata.

In the ESDA module, we will introduce the three types of spatial data (areal data, point-referenced or geostatistical data, and mapped point process or point pattern data). We will learn basic process spatial data processing in preparation for analysis, Monte Carlo simulation and Bayesian spatial statistics, cluster analysis of mapped point process, and the concept of spatial autocorrelation.

In the spatial modeling module, we will survey various statistical models that suit different types of spatial data. Some examples are: (1) space-time models for mapped point process; (2) the conditional autoregressive model (CAR) and the simultaneous autoregressive model (SAR) for areal data; (3) Bayesian hierarchical models for point-referenced or geostatistical data; and (4) multilevel and Bayesian spatial models for small area estimation.

Throughout the course, we will focus on the intuition behind spatial statistics, the use of computer software, and coding. We will run computer simulations and replicate case studies in real social science research. Some of the case studies will be drawn from my own research.

About the InstructorHongwei Xu is an associate professor of sociology at the City University of New York (CUNY) – Queens College. He received his BA in sociology from Peking University in 2003 and PhD in sociology from Brown University in 2011. Before joining CUNY, he was a post-doc research fellow at the Institute for Social Research, University of Michigan during 2012-2014, and a research assistant professor at the same institute during 2015-2018. His research interests include population aging and health, spatial demography, and quantitative methods. His work has been published in American Journal of Sociology, Demography, European Sociological Review, Health & Place, International Journal of Epidemiology, Journal of Epidemiology & Community Health, Population Studies, Sociological Methodology, Social Science & Medicine.

[2.3] Introduction to Applied Bayesian Regression Analysis [课程编号509]

主讲教师:Jun Xu(徐峻)教授

语言:英文

时间:2022年7月27日-7月31日

地点:线上直播(无回放)

课时:每天上午3.5小时课程,共5讲。

学费:1000元(提供学费减免奖学金,名额有限)

招生人数:25人

Course Description

With the exponential growth in computing power, Bayesian statistics has metamorphosed from an obscure alternative to a serious challenger of the traditional frequentist statistics. This workshop introduces the conceptual background, computational procedures, and statistical techniques for doing Bayesian regression analysis, with a focus on application and interpretation. Selected topics covered include the historical background of the Bayesian framework in comparison with the classical frequentist approach, the Bayes’s theorem, the basics of likelihood theory, the Markov chain Monte Carlo (MCMC) methods, Bayesian GLM and advanced models, and post-estimation analyses. The first component of each lecture covers important concepts and techniques, and the second component teaches the workflow of doing Bayesian data analysis using R and Stan.

About the InstructorDr. Jun Xu is professor of sociology and data science at Ball State University. His quantitative research/teaching interests include Bayesian statistics, categorical data analysis, causal inference, machine learning, and statistical programming. His methodological works have appeared in journals such asSociological Methods and Research, Social Science Research, and The Stata Journal. He is an author of Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives(with Dr. Andrew S. Fullerton by Chapman & Hall), and he is the author of another statistical monograph on modern regression analysis forthcoming with the same publisher. In the past two decades or so, he has authored or co-authored several statistical application packages, including gencrm, grcompare, and the popular SPost9.0 package in Stata and stdcoef in R.

二、申请程序

1.申请原则:

(1) 2022年暑期班“基础模块”由2门课程组成,采取“模块报名”的申请方式,2门基础课程不能分别单独申请。

(2) “专题模块”由3门课程组成,采取“课程报名”的申请方式,3门专题课程可以分别单独申请,最多不能超过两门

(3)原则上不鼓励学员同时申请“基础模块课程”与“专题模块课程”。

2.申请日期:2022年4月26日 - 5月30日。

3.申请方式:

Ø在线提交报名申请(扫描对应的二维码提交申请)。

Ø注意:由于基础模块和专题模块所需要的申请材料有差异,请分开申请。

1B8DA

基础班报名

1FABD

专题班报名

Ø2022年6月10日前审核报名材料并尽快通知录取结果,录取结果将于6月10号在上海大学社会学院(https://sociology.shu.edu.cn/)、上海大学数据科学与都市研究中心网站(https://suns.shu.edu.cn/)以及魔都有调研微信公众号公布。录取通知及缴费方式将陆续发送至报名邮箱。若在6月20日之前未收到录取结果,可来电或者发邮件至shuworkshop2022@126.com咨询。

4.学员收到录取通知(电子邮件)后,发送《回执》或缴费证明给主办方;主办方将通过电邮发送相关材料和指引。

5.咨询方式:

电话

021-66136195(上海大学陈老师)(基础班)

021-20595669(上海纽约大学刘老师)(专题班)

咨询邮箱:

shuworkshop2022@126.com(基础班)

shanghai.caser@nyu.edu(专题班)

官方网站:

上海大学社会学院

上海大学数据科学与都市研究中心

上海纽约大学应用社会经济研究中心

6.确保所提供的联系方式(电话和电子邮箱)能及时联系到申请者本人。如所提供的电话和电子邮箱有变,请及时告知,以免由此导致相关信息资料不能正常送达。

三、课程考核

1.凡参加暑期课程的学员,完成必须的作业。

2.完成课程培训,颁发《结业证书》。

四、应用社会科学方法研修班课程规划大纲

基础模块课程

500.《统计软件应用:STATA》[基础课程]

501.《应用回归分析基础》[基础课程]

502.《高级应用回归分析》[基础课程]

503.《类别数据分析》[基础课程]

专题模块课程

504.《调查数据分析》

505.《对数线形模型》

506.《事件史分析》

507.《多层次线形模型》

508.《固定效应模型》

509.《因果分析模型》

510.《结构方程模型》

511.《研究设计》

512.GIS应用与空间分析》

513.《潜类分析》

514.《网络分析》

515.《抽样调查》

516.《增长模型》

517.《因素分析》

518.《路径分析》

519.《民意调查》

520.《计算机在调查中的应用》

521.《统计软件应用:SAS》

521.《统计软件应用:R》

522.《数据挖掘》

522A.《计算社会科学入门》

522B.《定量文本分析》

522C.《应用贝叶斯回归分析导论》

高级研讨课程

523.《数据分析专题》

524.《社会科学研究专题》

525.《社会科学定量研究论文》工作坊


上一条:近期专业学术会议征文部分汇总(6月14日更新)

下一条:关于2022年优秀毕业生评选工作的通知